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1. INTRODUCTION AND STATEMENT OF MAIN RESULTS

The paper is concerned with the existence of continuous selections for set
valued mappings and, in particular, for set valued mappings which are
metric projections of real normed linear spaces onto finite dimensional sub
spaces. Those set valued mappings which are metric projections are charac
terized. The concepts of derived mappings and stable derived mappings of a
set valued mappings between topological spaces are introduced. These con
cepts are investigated for mappings whose values are convex subsets of a
finite dimensional real linear space, and they are used to describe recent
results of other authors concerning metric projections in spaces of
continuous functions. A question posed by Deutsch is answered negatively.

Let X and Y be topological spaces and let 9( Y) denote the set of all
subsets of Y. By a set valued mapping ¢J of X into Y we mean a mapping

¢J: X -+ &'( Y).

It is necessary to admit the possibility that ¢J(x) =.0 for some x E X. We
will write

D(¢J) = {x E X: ¢J(x),=, 0}.

The "graph" of ¢J is the set

G(¢J)= U {x} x¢J(x)s;Xx Y.
XEX

If l/J: X -+ &'( Y) is a second set valued mapping then l/J is said to be a sub
mapping of ¢J, and we write ljJ r;;;, ¢J, if ljJ(x) s; ¢J(x) for all x E X. Thus ljJ is a
submapping of ¢J if and only if G( ljJ) s; G(¢J), and l/J = ¢J if and only if
G(l/J) = G(¢J).
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SET VALUED MAPPINGS

A non-empty set valued mapping

1,6: X --+.c1'( Y)\ {0}
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is lower semi-continuous (respectively upper semi-continuous) if
{x:rP(x)nU"",0} (respectively {x:rP(x)~U}) IS an open subset of X
whenever U is an open subset of Y.

We now define certain submappings of a set valued mapping
1,6: X --+.c1'( Y). The definitions are central to the discussion. We denote by

1,6' : X --+ .c1'( Y)

the submapping of 1,6 defined by

rP'(x) = {y E rP(x): XE int{x': rP(x') n U"'" 0} whenever y E int U}

(here int U denotes the interior of the subset U of Y). It is easily seen that
l/J is lower semi-continuous if and only if D( 1,6 ) = X and rP' = 1,6. We now
define rP(~) for each ordinal number rJ. by 1,6(0) = 1,6, rP(H 1) = (rP(~»)', and
l/J(fJ)(x) = n~<{J rP(~)(x) whenever f3 is a limit ordinal.

If rP(~ + 1) = rP(~) then rP(fJ) = rP(~) for all f3 ~ rJ.. This situation must occur.
The transfinite sequence (G(rP(~»): rJ. an ordinal) of subsets of Xx Y is
decreasing, and strictly decreasing until it becomes constant. Therefore, if
card rJ. > card Xx Y then G(rP(H 1») = G(rP(~») and so rP(H 1) = rP(~). The even
tual value of the transfinite sequence (rP(~): rJ. an ordinal) will be denoted

1,6*: X --+.c1'( Y).

The mapping 1,6' will be called the derived mapping of 1,6, the mappings rP(~)

the derived mappings of l/J, and 1,6* the stable derived mapping of 1,6.
A continuous selection for 1,6: X --+ &>( Y) is a continuous mapping

s: X --+ Y such that s(x) E rP(x) for all x E X. Our original concern was with
the existence of continuous selections for a metric projection
p = PM: Z --+ &>(M) of a real normed linear space Z onto a finite dimen
sional subspace M of Z. (Throughout the paper linear spaces are real.)
Such a metric projection is upper semi-continuous and its values are non
empty compact convex sets. In Section 2 a characterization is given of
those mappings on finite dimensional spaces which are metric projections;
it yields, for example, the fact that if X is a euclidean ball, M is a finite
dimensional space, and l/J: X --+ &>(M)\ {0} is upper semi-continuous and
compact convex set valued then 1,6 can be realized, via a homeomorphism,
as the restriction of a metric projection. Thus, in general, the restriction of
the discussion to metric projections is irrelevant. We are concerned mainly
with set valued mappings 1,6: X --+ &>( Y), where Y is a finite dimensional real
linear space and 1,6 is convex set valued.
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The mappings if/, r/J(~), and r/J* are considered in more detail in Section 3.
The relevance of r/J* to the existence of continuous selections is established
by the following simple self-generated extension of Michael's celebrated
selection theorem. Michael's theorem appeares in [16] but there is later
literature (see, for example, [17] and references therein). Theorem 1.1 is
proved in Section 3.

THEOREM 1.1. Suppose that X is a paracompact Hausdorff space and Y
is a Banach space. If r/J: X --> Y'( Y)\ {0} is a non-empty set valued mapping
such that r/J(x) is a closed convex subset of Y for each x E X then there exists
a continuous selection for r/J if and only if r/J*(x) # 0 for all x E X. If X is
completely paracompact (i.e., every open subset of X is paracompact) then
U = D(r/J*) is the largest open subset U of X with the property that there
exists a continuous selection for r/J I U.

The main results of the paper are those of Section 4 which is concerned
with convex set valued mappings into finite dimensional real linear spaces.
In particular situations one can ask for a description of r/J* and for informa
tion about the first ordinal IX such that r/J(~) = r/J*. The present writer conjec
tures that any ordinal can occur as min {IX: r/J(~) = r/J*} for some X, Y, and
r/J: X --> Y'( Y). However, for significant classes of set valued mappings the
situation can be dramatically different. The main result of the paper is the
following theorem.

THEOREM 1.2. Suppose that n is a positive integer, X is a topological
space, and r/J: X --> Y'(Il~n is a set valued mapping such that r/J(x) is convex for
each x E X. Then r/J(n) lint D(r/J(n)) is lower semi-continuous and, consequently

ifD(r/J(n)) is open in X,

ifD(r/J(n)) is not open in X.

Theorem 1.2 is, in two ways, best possible even when restricted to set
valued mappings which are metric projections (the next theorem describes
precisely in which ways). It is proved in Section 4.

THEOREM 1.3 (a) There exists a real normed linear space X of dimension
2n + 1 and a subspace M of X, of dimension n' such that for the metric
projection P: X --> Y'(M) of X onto M

(1) D(p(n-I))=X,
(2) pen) # p(n+ I).

(b) There exists a normed linear space X of dimension 2n and a
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subspace M of X, of dimension n, such that for the metric projection
P: X ~ &>(M) of X onto M

(1)' D(p(n)) = X,
(2)' p(n-l)=/=p(n).

These results provide a negative answer to a question posed by Deutsch
[10, Problem 2.16]. Deutsch and Kenderov [12] have considered convex
set valued mappings into one dimensional spaces; their main result follows
from the case n = 1 of Theorem 1.2 together with Michael's selection
theorem (Theorem 1.1).

The final Section 5 concerns metric projections onto finite dimensional
subspaces of spaces of continuous functions. Continuous selections for
these metric projections have been considered recently by several authors
(Blatter and Schumaker [5], Fischer [13], Li [15]). In Section 5 mild
extensions of Li's results are described in terms of the derived mappings of
the metric projections. Here we state only one of the conclusions-one
which contrasts strongly with the results of Theorems 1.2 and 1.3.

THEOREM 1.4. Let X be a compact Hausdorff space and let C(X) be the
space of real continuous functions on X, equipped with the uniform norm. Let
M be a finite dimensional subspace of C(X) and let P: C(X) ~ &>(M) be
the metric projection of C(X) onto M. Then P'I int D(P') is lower semi
continuous and

{
P'

p* = p(2)
ifD(P') is an open subset ofC(X)

if D( P') is not open.

(It should be remarked that it can happen that p* = P; that is, it can happen
that P is lower semi-continuous [6, 4].)

2. WHICH SET VALUED MAPPINGS ARE METRIC PROJECTIONS?

Let X be a real normed linear space and let M be a subspace of X. Then
for XEX

d(x, M) = inf{ II x - m II: mE M}

is the distance of x from M and

P: X ~ &>(M)
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defined by
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P(x)= {mEM: Ilx-mll =d(x,M)}

is the metric projection of X onto M.
There is now an extensive literature concerned with continuity properties

of metric projections and with the existence of continuous selections. The
problem have been considered both in general and in particular contexts
(see, for example, the survey article [10]).

Suppose that the subspace M is finite dimensional. Then P is upper semi
continuous and for each x E X the set P(x) is non-empty compact and
convex. For our discussion the domain of P is relevant, it seems that the
upper semi-continuity is not, and the most significant property of P is that
it is convex valued. First we characterize metric projections in finite dimen
sional real linear spaces.

THEOREM 2.1. Let X be a finite dimensional real linear space and let M
be a subspace of X. If P: X --+ .9'(M) is a set valued mapping of X into M
then there exists a norm on X such that P is the metric projection of X onto
M relative to that norm if and only if the following conditions are satisfied:

(i) P: X --+ .9'(M) is upper semi-continuous,

(ii) P(x) is non-empty, compact, and convex for each XEX,

(iii) P( Ax ) = AP(x) for all x E X and AE ~,

(iv) P(x+m)=P(x)+mfor all XEX and mEM.

The necessity of conditions (iHiv) is well-known and easily established.
The sufficiency of the conditions will be established via a variant of the
theorem.

The space X is isomorphic to a euclidean space and so we can speak of
euclidean balls and spheres (of centre 0) in X and in any subspace of X. If
X = L EB M and I: is a euclidean sphere, centre 0, in L such that L = ~I:

then each x E X has a unique representation

x=Ay+m, Y E I:, mE M, A~ 0.

If P is a set valued mapping satisfying conditions (iii) and (iv) then

P(x) = AP(y) + m.

Thus, P is determined by PI I:. The mapping P II: is odd:

P( -x) = -P(x)

Theorem 2.1 will follow from

for all x E I:.



SET VALUED MAPPINGS 53

THEOREM 2.2. Let X =L EB M be a finite dimensional real linear space
and let I; be a euclidean sphere, centre 0, in L such that L = IRI;. If
¢J: I; --+ &(M)\ {0} is an upper semi-continuous compact convex set valued
mapping which is odd then there exists a norm on X such that if P is the
metric projection of X onto M relative to the norm then r/J = PI I;.

Proof Let B be a closed euclidean ball, centre 0, in X such that
I; = (fr B) n L and such that x + M is tangent to B for each x E I;. Let

K=~Bu U (x-¢J(x)).
<E E

The second set on the right is the "graph" of - ¢J and is, by the properties
of ¢J, a compact subset of X. Therefore the convex hull, co K, of K is a com
pact convex symmetric neighbourhood of °in X. (That the convex hull of
a compact set is compact is a consequence of Caratheodory's theorem.)

There is a norm, 11·11, on X such that co K is its unit ball. It will be
shown that this norm satisfies the assertion of the theorem.

Let x E I; and let H be the hyperplane of support to B at x. Then
x +M r;;;. Hand H n I; = {x}. Then K lies in one of the half-spaces deter
mined by Hand K nH = x - ¢J(x). Therefore

(co K) n (x + M) r;;;. (co K) n H = x - ¢J(x)

and so

inf {II x + m II: mE M} = 1,

and II x + m II = 1 for mE M if and only if m E -¢J(x). Thus d(x, M) = 1 and
P(x) = ¢J(x). This completes the proof.

The proof of Theorem 1.3 depends upon the construction of examples.
They will first be defined on euclidean cells (homeomorphic to a subset
of I;). We now show how the construction can be "transferred" to I;.

Let the euclidean norm on W be denoted by I'1. Let En be the euclidean
ball

E" = {x E IR n
: Ix I~ 1},

let I;"- 1 be the (n - 1)-sphere which is the boundary of E", and let I;:- 1

and I;"-- I be the "upper" and "lower" hemispheres; that is,

I;:- 1 = {x = (x l' ... , x n ) E W: Ix I = 1, XII ~ O}.

Let p: 1R" --+ 1R"- 1 be the projection

Then pi I;"+- 1 is a homeomorphism of I;:- 1 onto En - 1.
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Suppose that ¢J: ~En-l --+ &'(M) is a set valued mapping (where M is still
a subspace of a linear space X). Define S¢J: En- 1

--+ &'(M) by

(S¢J)(x) =
¢J(x)

(
I-IX 1 )

2(I-lxl) ¢J -I-xl- x

Define T¢J: En- 1
--+ &'(M) by

(T¢J )(x) = {(S¢J )(p(x))
-(S¢J)(p( -x))

if xEE:- 1
,

if x E E"--- '.

Then T¢J is well-defined. Let h be the homeomorphism of ~En - 1 into E:- 1

such that ph is the identity mapping. The properties of the transformation
T are now summarised in a lemma. Its proof (which requires Lemma 3.8)
is elementary and we omit the details.

LEMMA 2.3. There exists a transformation T which associates with each
set valued mapping ¢J: ~ En - 1 --+ &P(M) an odd set valued mapping
T¢J: En - 1 --+ &(M) in such a way that

(i) T¢Jlh(~En-l)=¢Jp,

(ii) If ¢J is upper semi-continuous then so is T¢J,

(iii) If ¢J is non-empty compact convex valued then so is T¢J,

(iv) (T¢J )(~) = T( ¢J(~») for every ordinal a, and (T¢J)* = T(¢J*),

(v) If s: ~En - 1 --+ M is a continuous selection for ¢J then Ts is a
continuous selection for T¢J.

3. ELEMENTARY RESULTS CONCERNING THE DERIVED MAPPINGS

The derived mappings ¢J', ¢J(~) (a an ordinal), and ¢J* have been defined
in Section 1. The scheme of the definition can be found in Baire's classic
monograph [1]. The submapping ¢J' of ¢J was introduced in [8]. Beer [2]
has defined a mapping associated with ¢J, which he would denote 8¢, in the
case that Y is a metric space; in fact 8¢ = (¢J -)' and f = 8¢ (\ ¢J (when the
right hand sides of the equations have their natural meanings). In this
section we present some routine elementary propositions, some of which
require no proof, and two constructions (Lemmas 3.8 and 3.9) which are at
the heart of the constructions required to justify Theorem 1.3.

Throughout this section X and Y will be topological spaces and
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¢J: X -+.?J>( Y) will be a set valued mapping. On occasion Y will also be a
linear space and ¢J may be convex set valued. The first proposition simply
emphasises remarks included in Section 1.

PROPOSITION 3.1. (i) D(¢J') 5; int D( ¢J ).

(ii) ¢J' = ¢J if and only if D(¢J) is open and ¢J ID(¢J) is lower semi
continuous.

(iii) (¢J*)' = ¢J*.

A submapping of a set valued mapping was also defined in Section 1.

PROPOSITION 3.2. (i) If ljJ 5; ¢J then ljJ' 5; ¢J' and ljJ* 5; ¢J*.

(ii) If ljJ 5; ¢J and ljJ is lower semi-continuous then ljJ = ljJ* 5; ¢J*.

PROPOSITION 3.3. If U is an open subset of X then (¢J Iu)' = ¢J' IU and
(¢J IU) *= ¢J* Iu.

PROPOSITION 3.4. If V is a subset of Y let ¢J n V be the set valued
mapping defined by (¢J n V)(x) = ¢J(x) n V. If V is an open subset of Y then
(¢J n V)' = ¢J' n V.

The next proposition concerns properties which are inherited by the
derived mappings from ¢J.

PROPOSITION 3.5. (i) If ¢J(x) is closed for each XEX then ¢J'(x) and
¢J*(x) are closed for each x E X.

(ii) If Y is a topological linear space and ¢J(x) is convex for each x E X
then ¢J'(x) and ¢J*(x) are convex for each XEX.

The next proposition concerns continuous selections for ¢J; we can then
give the proof of Theorem 1.1.

PROPOSITION 3.6. (i) If s: X -+ Y is a continuous selection for ¢J then
s(x) E ¢J*(x) for all x E X.

(ii) If U is an open subset of X and there exists a continuous selection
for ¢J IU then U 5; D(¢J*).

Proof We can regard s as a lower semi-continuous single-point-set
valued submapping of ¢J. Thus (i) is a special case of Proposition 3.2(ii).
Assertion (ii) follows from (i) applied to ¢J IU, using Proposition 3.3.

Proof of Theorem 1.1. If U is an open subset of X and there exists a
continuous selection for ¢J IU then, by Proposition 3.6.(ii), U 5; D(¢J*).
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Under the assumptions of the theorem, for each x E X the set ¢J*(x) is a
closed convex subset of Y by Proposition 3.5. If U = D(¢J*) then U is open
and ¢J* I U is lower semi-continuous, by Propositions 3.1 and 3.3. If U is
paracompact then, by Michael's selection theorem [16], there exists a
continuous selection for ¢J* IU, and so for ¢J IU. The theorem is proved.

The final results of this section concern operations on set valued
mappings: composition with a continuous mapping, multiplication by a
continuous function, and a cone construction.

PROPOSITION 3.7. Let X, Y, and 2 be topological spaces. If ¢J: X -+.9'( Y)
is a set valued mapping and p: Y -+ 2 is a mapping then po ¢J: X -+ .9'(2) will
denote the set valued mapping defined by

(po ¢J)(x) = p(¢J(x)).

If p: Y -+ 2 is continuous then po ¢J' S; (p 0 ¢J)'.

Proof Suppose that XoE X and Yo E ¢J'(xo). Let V be a neighbourhood
of p(Yo) in Z. Then p~I(V) is a neighbourhood of Yo in Yand

{XE X: (p 0 ¢J)(x) n V,., 0} = {XE X: ¢J(x) np-l( V)'" 0}

which is a neighbourhood of X o in X. This proves the proposition.

LEMMA 3.8. Suppose that Y is a real normed linear space, that
¢J: X -+ .9'( Y) is a set valued mapping such that U {¢J(x): x E X} is a bounded
subset of Y, and that f: X -+ IR is a continuous function. Let f¢J: X -+.9'( Y) be
the mapping defined by

Then

(f¢J )(x) =f(x)¢J(x) for all XE X.

f(x) ¢J'(x)

(f¢J)'(x)= {O}

o

if f(x)",O,

if f(x)=O and xEintD(¢J),

if f(x) = 0 and x ¢ int D(¢J).

(I )

(2)

(3)

In particular, if D(¢J') = X then (f¢J )' = f¢J'·

Proof The lemma will be proved first in the case in which f(x) ,., 0 for
all x E X. Suppose that this condition is satisfied, that XoE X and Yo E ¢J'(xo)·
Let V be a neighbourhood of f(xo)Yo in Y. The mapping F: X x Y -+ Y
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defined by F(x, y) = f(x) y is continuous. So there exist neighbourhoods W
of Xo in X and U of YoE Y such that Wx UsF-l(V). Now

{XEX:f(x)~(x)nV#0}

;2 {x:f(x)¢(x)nf(x) U#0}

n {x:f(x) Us V}

;2{x:~(x)nU#0}nW

and the latter set is a neighbourhood of Xo since Yo E f(xo). This proves
that f(xo)Yo E (f~)' (xo)· Thus f~' s (f~)'. The reverse inclusion follows
because ~ = (1/f)(f~).

Now consider the general case. The special case applied to ~1(X\f~l(O))

gives (1), by Proposition 3.3. Statements (2) and (3) follow from the
definition of (f~)', the continuity of f, and the boundedness property of ~.

The proof of the lemma is complete.

LEMMA 3.9. Suppose that Y is a normed linear space, Y 1 is a proper
closed linear subspace of Y, Yo E y\ Y 1, and ~: X --+ YJ( Yd is a convex set
valued mapping. If ljJ: X --+ YJ( Y) is the set valued mapping defined by

then

ljJ'(x) = co( {Yo} U ~/(X))

for all x E X,

for all XE X.

Proof The constant mapping x --+ {Yo} and ~ are both submappings of
ljJ. Therefore, by Propositions 3.2(i) and 3.5(ii),

co( {Yo} u ¢'(x)) S ljJ'(x) for all x E X.

Let Z = {(1 - A) Yo + AYl: ), E (0, 1], Yl E Yd. Then ~ can be regarded as
a set valued mapping into Zu {Yo}, and Z is an open subset of Zu {Yo}.
Let p: Z -> Y l be the projection of Z onto Y l from the point Yo; that is,
p(z) is the intersection of the line Yo + lR(z - Yo) with Y 1 • Then p is
continuous and p(ljJ n Z) = ¢. Therefore, by Propositions 3.7 and 3.4,

¢' ;2 p 0 (ljJ n Z)' = p 0 (ljJ I n Z).

It follows that, for all x EX,

ljJ'(x)\ {Yo} = ljJ'(x) n Z S co( {Yo} u f(x)).

The proof of the lemma is complete.
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4. CONVEX SET VALUED MAPPINGS

Theorems 1.2 and 1.3 are proved in this section and their relation to
previous work is discussed.

The proof of Theorem 1.2 requires an elementary convexity lemma. The
calculations will be in terms of the euclidean distance in ~n. If w E ~n, e > 0
then B( w, e) will denote the open ball, centre w, of radius e. If K and K' are
subsets of ~n then

J(K, K') = sup {x E K: d(x, K')}

is the deviation of K from K'.

LEMMA 4.1. Let zo, , Zm be affinely independent points in ~m and let
K = cor zo, ..., Zm}. If Z~, , z;" are points such that d(z;, z;) < e for i = 0, ... , m
and WE K is a point such that d( w, ~m\K) ~ e then WE K' = co {z~, ..., z;,.}.

Proof If L7'~o 8; = 1, 0 ~ 8; ~ 1 for i = 0, ... , m, then

Therefore J(K, K') < e. Suppose that, contrary to the assertion, w ¢ K'.
Then there exists a closed half-space H such that K' s H, w ¢ H. Let w' be
the point such that [w', w] is orthogonal to the hyperplane fr Hand

d(w', H)=d(w, H)+e.

Then d(w', w) = e and so w' E K. Also d(w', K') ~ d(w', H) > e. This con
tradicts the fact that J(K, K') < e.

Proof of Theorem 1.2. It is sufficient to prove that if D(rjJ(n») = X then
rjJ(n) is lower semi-continuous. The theorem then follows, by Proposi
tion 3.3, by applying this result to rjJ lint D(rjJ(n»).

Suppose, on the contrary, that D(rjJ(n»)=Xbut that rjJ(n+l)-:lrjJ(nJ. Then rjJ
has:

PROPERTY Ao. There exist x E X and WE rjJ(n)(x) such that w ¢ rjJ(n + l)(X).

We now define a property Aj , for eachj= 1, ... , n. Property Ao is the first,
degenerate, case. A j-simplex (J in ~n with vertices zo, ... , Zj will be denoted
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We will denote by Int (J and a(J the formal interior and boundary of the
simplex:

{

j j }
Int (J= ;~o 8i z i : 0<8;< 1 for i=O, ...,j, ;~o 8;= 1 ,

I

a(J = U co {zo' ... , Zk> ... , zJ.
k=O

("int" is reserved for the topological interior of a subset of a space.)

DEFINITION OF PROPERTY Aj . If j E {t, ..., n} then ~ will be said to have
property Aj if there exist x E X, a simplex (J = <zo, ..., Zj> in IRn such that

{ 7.} C ,,(n-j+ 1)( )Zt, ... , J:..} -'I-' X,

I> > 0, a point WE Int (J such that

d(w, a(J) = 31>,

and an open neighbourhood N of x such that

for all U E N.

A contradiction will be obtained by proving:

(i) If j E {O, ... , n -l} and rjJ has property Aj then rjJ has property
Aj + l ,

(ii) rjJ cannot have property An.

Proof of (i). Suppose that ~ has property Ao and let x, w be as in the
definition of Ao. There exists I> >°and an open neigbourhood N of x in X
such that

for all UE N,

and

for some x' EN.

For one such x'EN choose ZoErjJ(n-I)(x')nB(w,l» and ZIErjJ(n)(X').
Choose w' E [zo, ZI] such that d(w', zo) = 31>. Then x', w', (J = <zo, ZI),

I> > 0, and the neighbourhood N of x satisfy the definition of property AI'

Now suppose that j E {I, ..., n - I} and that rjJ has property Aj and
let x, (J = <zo, ..., Zj >, I> > 0, WE Int (J, and N be as in the definition of
property Aj .
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Since w¢1(n-i+ 1)(x) there exists an e', O<e'<!be, an open
neighbourhood N' of X, N' ~ N, and a point x' EN such that

and

1(n-/-l)(U) n B(zo, e') of- 0

1(n-/)(u) n B(Zi' e') of- 0

for all U EN',

for all U EN' and i = 1, ...,j,

Choose

and

d(w, 1(n-/)(x')) ~ 8e'.

z~ E 1(n -/ - 1)(x') n B(zo, e'),

z;E1(n-/)(x')nB(zi,e') for i=1, ...,j,

Let a' = <z~, ... , zi+ I)' (We can use the notation <... ) and oa' before it
is seen that the "vertices" of a' are affinely independent.) Let P be the
orthogonal projection of IRn onto the affine hull of {zo, ..., z/}. Then
P(z;) E B(Zi' e') for i = 0, ...,j. Also, e' <!be < 3e = d(w, oa). Therefore,
by Lemma 4.1, wEco{p(za ...,p(zi)}. If w=I.1~08iP(Z;), I.{~08i=1,

0~8i~1 for i=O, ...,j, let w"=I.{~08iZ;. Then w"Eco{z~, ...,zi} and
d(w, w") < 2e'. It follows that

d(w", 1(n-/)(x')) ~ d(w, 1(n-/)(x')) - d(w, w") ~ 6e'

and

d(w", o<z~, ..., zi») ~ d(w, oa) - 3e' = 3e - 3e'.

Now let Q be the orthogonal projection of IRn onto the affine hull of
{z~, ..., zi}. Then

d(Q(zi+I)' z~)~d(Q(z;+I)' zo)+d(zo, z~)<2e+e',

and so, for i = 1, ...,j,

d(w", co{z~, ... , i;, ..., zi+ I} ~ d(w", co{z~, ..., i;, ..., zi, Q(zi+ I)})

~ d(w", a<z~, ..., z;») - d(Q(zi+ I), z~)

>e-4e'

>6e'.
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Furthermore ¢J(n -j)(x') is convex, by Proposition 3.5(ii), and so

d(w", co {z'J' ..., z;+ J}) ~ d(w", ¢J(n-j)(x')) ~ 6£'.
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It follows from the inequalities that z~, ..., zJ+ J are affinely independent and
that there exists a point w' E Int (J' such that Qw' = w", d(w', w") = 3£', and
d(w', a(J') = 3£'. Also,

d( w', ¢J(n -j)(x,)) ~ d( w", ¢J(n -j)(x')) - d( w', w") ~ 3£' > 0,

so w' ¢ ¢J1n-j)(x').
Finally, we note that, for all u EN',

Thus, x', (J', £', w', and N' satisfy the definition of property Aj + 1 and (i)
is proved.

Proof of (ii). Suppose on the contrary that ¢J has property An" Let x,
(J, £, w, and N be as in the definition of property An" Let N' be an open
neighbourhood of x such that N' s:::: Nand

¢J(u) n B(Zi' 2£) =I 0 for all uE N' and i E {O, ..., n}

(for i = °the condition is the final condition of property Aj , j = n). Now
since d( w, a(J) = 3£ > 2£ the set

is a neighbourhood of w, by Lemma 4.1. Also Ws::::¢J(u) for all uEN', by
the choice of N' and the convexity of ¢J(u). Therefore WE Ws::::¢J(l)(x) which
is a contradiction. The proof of Theorem 1.2 is complete.

The next theorem achieves the first stage in the proof of Theorem 1.3.

THEOREM 4.2. (a) There exists an upper semi-continuous compact convex
set valued mapping ¢J: [ - 1, 1]n --+ 2J!( W) such that

(1) D(¢J(n-J))= [-1, l]n,
(2) ¢J(n) =I ¢J(n + 1).

(b) There exists an upper semi-continuous compact convex set valued
mapping ljJ: [ - 1, 1]" - J --+ Y'( IR n) such that

(1)' D(ljJ(n))=[-l,l]"-J,
(2)' ljJ(n-J)=lljJ(n).
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Proof (a) Let X = [ - 1, 1]nand Y = /R n
• The space X is a subspace

of /Rn and /Rn will be regarded as a product space, /Rn = /Rn - k X /Rk, as is
convenient.

Let YI S; ... S; Yn = Y be subspaces of Y such that dim Y i = i for
i = 1, ... , n, and choose YiE Y i\ Y i - I for i = 2, ... , n.

For k = 1, ... , n let Zk be the set of points in X of the form

(~, ..., _.1_,0, ...,0)
II In + l-k

where (il"'" in+l_dENn+l-k and l<il~ ... ~in+l-b and let
Zn + 1 = {O} S; X. Then each Zk is a discrete set and its derived set (i.e., set
of accumulation points) is

n+1

Z~= U Z;.
;~k+ I

Thus Zk S; /Rn + I - k X {O} and Zk+ I = Z~\ (/R n
- k- I X {O} ).

We now construct set valued mappings iflk: X -+ &I( Yd for k = 1, ..., n,
such that the following conditions are satisfied:

(ik iflAx) is a non-empty compact convex subset of Yk for each
XEX.

(ii)k iflk is upper semi-continuous.

(iii)k iflLk-1)(X) # 0 for all XEX.

(iv)k iflLk)(x) = 0 for all XEZk'

(vk iflLk- l
) is lower semi-continuous at each point of X\Zb and so

iflLk)(x) = iflLk- I )(x) for each x E X\Zk'

Let f: /Rn -+ /R be the function defined by

f(x)=

sgn Xl

Then f is continuous except at 0 and

lim inff(x) = -1,
X~O

lim supf(x) = 1.
x-a
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Let (a;)i;' 1 be a sequence of positive real numbers such that L~ 1 a i = 1,
and let (z i: i = 1, 2, ... ) be an enumeration of Z 1. Then

crc

g(x) = L aJ(x - z;)
i= 1

defines a function g: IR n
-+ [ -1, 1] which is continuous except at the

points of ZI. For each i= 1, 2, ...,

lim inf g(x) = - ai'
\" ----I' =/

lim sup g(x) = ai •
\'-Zi

Now identify YI with IR and define <PI: X -+ g'I( Yd by

<Pl(X) = [lim inf g(y), lim sup g(y)].
y_x y-x

Conditions (ih-(v)k> k = 1, are all satisfied.
Now let fk: X -+ IR, k = 2, ..., n, be the continuous function defined by

(the euclidean distance of the point x from the set IR n
- k X {o} ). Define the

set valued mappings t/J k+ 1: X -+.o/'( Yk+ 1) and <Pk + 1: X -+ g'I( Yk+ I), for
k = 1, ..., n - 1, by

if x=(xl, ...,xn)andxn+l_k~O,
otherwise,

and

Suppose that Conditions (ih-(v)k are satisfied for some k E {1, ..., n - 1};
they must be verified for k+ 1. Conditions (i)k+1 and (ii)k+1 are simple
consequences of Conditions (ih and (iih, of the definitions and of simple
properties of upper semi-continuity.

Let Uk> Lk> and H k be the sets of points X= (XI' ... , x n) in X such that
Xn+l_k>O' Xn+1 -k<O, and Xn+l_k=O, respectively. Then Uk> L k are
open subsets of X and H k is their common boundary. Also Zk S; Uk and
IR n - k X {O} s; Hk.

We now calculate the derived mappings of <Pk+ I in terms of those of <Pk.
It will be shown first that

c/JVL(x) = co( {Yk+ d u <pjj>(x)) for all XE Uk and j= 1, ..., k, (3)

t/JVl I(X)= <Pl!)(x) for all xELkuHk andj=l, ...,k. (4)

640/571\·5
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The statement (3) follows from Lemma 3.9 applied to t/J k+ II Uk' The set L k
is open and !/Jk+ , ILk = ¢Jk IL k so (4), for x E Lk> requires no proof.

It remains to prove (4) for xEHk. From the relation ¢Jk<;;t/Jk+1 it
follows, by Proposition 3.2, that ¢JLil <;; t/J ill, for all j = 1, ..., k. Suppose
that xEHk. Then xELk- and !/JLiL(x')<;; Yk for all x'ELk and for
j=O, ...,k-1. Therefore t/Ji/L(x)<;;Yk for j=l, ...,k, but Yk+lfYk' An
elementary calculation shows that if yE Yk and d(y, CO({Yk+ d U ¢JLil(x')))
is small then d(y, ¢Ji/l(x')) is small (using the fact that, by Proposition 3.5,
¢JLil(x') is convex). It now follows from what has been said, for j= 1, ..., k
in turn, that (4) holds for all x E H k'

Now, by (V)k and Lemma 3.8 applied to ¢Jk+I=fk+l!/Jk+" it follows
from (3) and (4) that

fk+ I(X) co( {Yk+ d u ¢JLk-ll(X))

¢JLkll(x) = Uk+ ,(x) Yk+ d
fk+ 1(x) ¢J<f - 1)(x)

if XE Uk\Zk>

if XEZk

if xELkuHk.

Thus (iii)k+1 is satisfied. It follows easily that (ivh+1 is satisfied. It also
follows, using (V)k, that ¢In 1 is lower semi-continuous at each point of
X\(Z;\Zd. Now

X\(Z;\Zk):2 X\(Zk+' u (W- 1
-

k
X {O}))

and ¢JLkll is lower semi-continuous at each point of IRn-I-k x {a} by
(iiih+1 and the properties offk+" This proves that (V)k+1 is satisfied.

This proves that Conditions (i)c(v)k are satisfied for all k = 1, ..., n.
Then ¢J = ¢In satisfies Conditions (l) (by (iii)n) and (2) (because
D(¢J~nl) = X\Zn, by (ivL and (v)n, and X\Zn is not open). This proves part
(a) of the theorem.

(b) Let Y be a subspace of IR n
, of dimension n -1. By part (a) of the

theorem there exists an upper semi-continuous compact convex set valued
mapping ¢J: [-1, 1y-I--.&(y) such that D(¢J(n-2))=[-1,l]n-1 and
¢J(n-I):f.¢J(n). ChooseYEW\Y. Define t/J: [-1, 1y-l--.&,(lRn) by

t/J(x) = co( {y} u ¢J(x)).

Then, by Lemma 3.9,

t/J(J)(x) = co( {y} u ¢J(J)(x))

for all x E [ -1, 1Y -I and all j = 1, 2, .... Therefore t/J(n - I):f. t/J(n). However
yEt/J(n)(X) for all XE [-1, 1]n-1 and so D(t/J(n)) = [-1, 1]n-l. The proof
of the theorem is complete.
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Proof of Theorem 1.3. The spaces [- 1, 1Jnand [- 1, 1Jn- 1 are
homeomorphic to the euclidean balls iP and iEn - 1, respectively.
Therefore Theorem 1.3 now follows from Theorem 4.2, Lemma 2.3, and
Theorem 2.2.

The results of this section relate to the work of Deutsch and Kenderov
[12]. They introduced the notion of almost lower semi-continuity (a.l.s.c.)
of a set valued mapping ¢J: X -> ,qI'( Y) of a topological space X into a metric
space Y. The definition will not be repeated here, but if ¢J(x) is compact for
all x E X then ¢J is a.l.s.c. if and only if D(¢J') = X (see [11, Lemma 3.1 J ).
Almost lower semi-continuity of ¢J is a necessary condition for the existence
of a continuous selection for ¢J and in some circumstances it is a sufficient
condition. Pelant (unpublished, see [12 J) and Beer [2 J have given
examples of a.l.s.c. set valued mappings for which there are no continuous
selections. Deutsch [10J asked whether a.l.s.c. is a sufficient condition for
a metric projection of a normed linear space onto a finite dimensional sub
space to possess a continuous selection. Theorem 1.3(a) (in the light of
Theorem 1.2) provides a negative answer.

From Theorems 1.1 and 1.2 there follows this positive result:

THEOREM 4.3. Suppose that X is a paracompact Hausdorff space and
that Y is an n-dimensional real linear space. If ¢J: X -> ,qI'( Y) is a set valued
mapping such that ¢J(x) is a closed convex subset of Y for each x E X then
there exists a continuous selection for ¢J if and only if D(¢J(n») = X.

The case n = 1 of this theorem contains [12, Theorem 2.7]. (Under
the conditions of the latter theorem "2-lower semi-continuity" of ¢J is
equivalent to the condition that D(¢J') = X.)

5. METRIC PROJECTIONS IN SPACES OF CONTINUOUS FUNCTIONS

Throughout this section P will denote a metric projection
P: C(X) -> .9'(M) of the space C(X) of real continuous functions on a
compact Hausdorff space X, equipped with the uniform norm, onto an
n-dimensional subspace M of C(X). We are concerned with the results of
three relatively recent papers [5, 13, 15J which consider the existence of
continuous selections for P. Li [15J defines a submapping Pn of P which,
it turns out, provides a description of the stable derived mapping p* of P.
We must begin with what is (apart from differences of notation and
expression) Li's definition.

IffE C(X) and Q£ P(f) then for e= 1 and e= -1 let

criteCf, Q) = n {x: e(f(x) - q(x)) = II f- q II}
qE Q
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and let )1f( Q) be the set of q E Q which are such that

critllCf, Q) s; int {x: 8(q(x) - p(x)) ~ O} for allp E Q and 8 E { -1, 1}.

The set )1f(Q) is, in the terminology of [15], the set of local maximal
elements of Q (relative to f). Suppose now that Q is a closed convex subset
of P(f). Then it is easily seen that either )1jQ) = 0 or )1f(Q) is a convex
extremal subset, that is a face, of Q. A face of a closed convex subset of a
finite dimensional space is necessarily closed. If )1jQ) ¥- 0 then either
)1~Q) = Q or dim )1f(Q) < dim Q. However, dim P(f) ~ dim M = n. There
fore the sequence P(f), )1f(P(f)), )1}(P(f)), ... , is a decreasing sequence of
closed convex sets and for some k, 0 ~ k ~ n,

P(f) ¥- ... ¥- )1J(P(f)) =)11 + I(P(f)) = ....

In particular )1'J(P(f)) is the smallest set in the sequence. Define a submap
ping Pk of P by Pk(f) = )11(p(f)) for k = 0, ... , n. We state four theorems
concerning the submapping Pn'

THEOREM 5.1. For eachfE C(X) either Pn(f) is empty or Pn(f) is a face
of the closed convex set P(f).

THEOREM 5.2. P' S; Pn'

THEOREM 5.3. int D(PI) = int D(Pn)'

THEOREM 5.4. Pnlint D(Pn) is lower semi-continuous.

Theorem 5.1 is simply an observation already made. It was proved in
[8] that P' S; PI and Theorem 5.2 extends that result; the proof uses the
method of [8] and depends upon an extension of [15, Theorem 1.7]. A
complete account of the proof requires repetition of material from [15]
and is not included here. Theorem 5.3 follow~ from the arguments of [15].
Theorem 5.4 in the case that D(P,)=C(X) (and so D(P)=C(X)) is the
main result of [15]. However, the assumption that D(Pd = C(X) is
unnecessary and the arguments of [15] actually yield Theorem 5.4.

The three preceding theorems can be summarised in a single theorem
which contains Theorem 1.4.

THEOREM 5.5. If M is any finite dimensional subspace of C(X), of dimen
sion n, and P is the metric projection of C(X) onto M then pi S; Pn,

int D(P, ) = int D(Pn) = int D(P') = D(P*),

and Pn' P', and p* coincide on D(P*).
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Proof By Theorem 5.2 and the results of Section 3

D(P*) s int D(P') S int D(Pn ).

Let U = int D(Pn ). Then by Theorems 5.2 and 5.4,

P* I Us P' I Us Pn I U = (Pn I U)* s (PI U)* = P* I u.
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Consequently Us D(P*) and the conclusions of the theorem follow.

The results summarised in Theorem 5.5 have had a long development
and can be traced through numerous papers [7, 4, 14, 8, 5, 13, 15J and in
unpublished work [6, 3J (the second of which has not been seen by the
present writer). The results of [5, 15J are close, except that the proof of
lower semi-continuity in [15J involves ideas which are not necessary under
the stronger assumptions of [5]. The results of Blatter and Schumaker [5J
were obtained under the assumption that there exists a continuous
selection for P. However, Fischer [13 J observed that it is enough for the
arguments of [5J to assume that D(P') = C(X). Li's results [15J were
obtained under the weaker assumption that D(P 1 ) = C(X). Li calls a subspace
M of C(X) with the property that D(Pd = C(X) an LMW-subspace in
recognition of the fact that the condition defining locally maximal elements
appears in the paper by Lazar, Morris, and Wulbert [14]. A detailed
account of the proof of the results described in this section, and in the form
given here, is included in [9 J in which the results of [18 J are also
discussed.

We conclude with some simple observations. The first is to note the
questions whether any of the sets D(Pd, D(Pn ), and D(P') are necessarily
open and whether P' = Pn always. The second is that the results show that
the spaces C(X) are approximation-theoretically special. One can easily
construct examples of a finite dimensional normed linear space X, subspace
M, and .metric projection P: X --+ &(M) such that D(P*) = X but P*(x) is
not always a face of P(x). Also, there do exist compact Hausdorff spaces
X and subspaces M of C(X) for which the metric projections are not lower
semi-continuous but do possess continuous selections (see [10J and
references therein). In the light of this, Theorems 1.2, 1.3, and 1.4
distinguish the spaces C(X).
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